13.8 C
New York
Monday, March 4, 2024

Latest updates in the domain of Meta Learning part7(Artificial Intelligence 2023)

Latest updates in the domain of Meta Learning part7(Artificial Intelligence 2023)

  1. Meta-Prior: Meta learning for Adaptive Inverse Problem Solvers(arXiv)

Author : Matthieu Terris, Thomas Moreau

Abstract : : Deep neural networks have become a foundational tool for addressing imaging inverse problems. They are typically trained for a specific task, with a supervised loss to learn a mapping from the observations to the image to recover. However, real-world imaging challenges often lack ground truth data, rendering traditional supervised approaches ineffective. Moreover, for each new imaging task, a new model needs to be trained from scratch, wasting time and resources. To overcome these limitations, we introduce a novel approach based on meta-learning. Our method trains a meta-model on a diverse set of imaging tasks that allows the model to be efficiently fine-tuned for specific tasks with few fine-tuning steps. We show that the proposed method extends to the unsupervised setting, where no ground truth data is available. In its bilevel formulation, the outer level uses a supervised loss, that evaluates how well the fine-tuned model performs, while the inner loss can be either supervised or unsupervised, relying only on the measurement operator. This allows the meta-model to leverage a few ground truth samples for each task while being able to generalize to new imaging tasks. We show that in simple settings, this approach recovers the Bayes optimal estimator, illustrating the soundness of our approach. We also demonstrate our method’s effectiveness on various tasks, including image processing and magnetic resonance imaging

2.MetaDefa: Meta-learning based on Domain Enhancement and Feature Alignment for Single Domain Generalization (arXiv)

Author : Can Sun, Hao Zheng, Zhigang Hu, Liu Yang, Meiguang Zheng, Bo Xu

Abstract : The single domain generalization(SDG) based on meta-learning has emerged as an effective technique for solving the domain-shift problem. However, the inadequate match of data distribution between source and augmented domains and difficult separation of domain-invariant features from domain-related features make SDG model hard to achieve great generalization. Therefore, a novel meta-learning method based on domain enhancement and feature alignment (MetaDefa) is proposed to improve the model generalization performance. First, the background substitution and visual corruptions techniques are used to generate diverse and effective augmented domains. Then, the multi-channel feature alignment module based on class activation maps and class agnostic activation maps is designed to effectively extract adequate transferability knowledge. In this module, domain-invariant features can be fully explored by focusing on similar target regions between source and augmented domains feature space and suppressing the feature representation of non-similar target regions. Extensive experiments on two publicly available datasets show that MetaDefa has significant generalization performance advantages in unknown multiple target domains. △

Source link

Latest stories